Fabrication of a Highly Sensitive Single Aligned TiO2 and Gold Nanoparticle Embedded TiO2 Nano-Fiber Gas Sensor

ACS Appl Mater Interfaces. 2017 May 10;9(18):15662-15671. doi: 10.1021/acsami.6b15554. Epub 2017 Apr 25.

Abstract

In this research, a single-aligned nanofiber of pure TiO2 and gold nanoparticle (GNP)-TiO2 were fabricated using a novel electro-spinning procedure equipped with secondary electrostatic fields on highly sharp triangular and rectangular electrodes provided for gas sensing applications. The sol used for spinning nanofiber consisted of titanium tetraisopropoxide (C12H28O4Ti), acetic acid (CH3COOH), ethanol (C2H5OH), polyvinylpyrrolidone (PVP), and gold nanoparticle solution. FE-SEM, TEM, and XRD were used to characterize the single nanofiber. In triangular electrodes, the electrostatic voltage for aligning single nanofiber between electrodes depends on the angle tip of the electrode, which was around 1.4-2.1, 2-2.9, and 3.2-4.1 kV for 30°, 45°, and 60°, respectively. However, by changing the shape of the electrodes to rectangular samples and by increasing distance between electrodes from 100 to 200 μm, electro-spinning applied voltage decreased. Response of pure TiO2 single nanofiber sensor was measured for 30-200 ppb carbon monoxide gas. The triangular sample revealed better response and lower threshold than the rectangular sample. Adding appropriate amounts of GNP decreased the operating temperature and increased the responses. CO concentration threshold for the pure TiO2 and GNP-TiO2 triangular samples was about 5 ppb and 700 ppt, respectively.

Keywords: electro-spinning; gas sensing; gold nanoparticle (GNP)-TiO2; pure TiO2; secondary electrostatic field; single-aligned nanofiber.