Distinct modulatory role of RNA in the aggregation of the tumor suppressor protein p53 core domain

J Biol Chem. 2017 Jun 2;292(22):9345-9357. doi: 10.1074/jbc.M116.762096. Epub 2017 Apr 18.

Abstract

Inactivation of the tumor suppressor protein p53 by mutagenesis, chemical modification, protein-protein interaction, or aggregation has been associated with different human cancers. Although DNA is the typical substrate of p53, numerous studies have reported p53 interactions with RNA. Here, we have examined the effects of RNA of varied sequence, length, and origin on the mechanism of aggregation of the core domain of p53 (p53C) using light scattering, intrinsic fluorescence, transmission electron microscopy, thioflavin-T binding, seeding, and immunoblot assays. Our results are the first to demonstrate that RNA can modulate the aggregation of p53C and full-length p53. We found bimodal behavior of RNA in p53C aggregation. A low RNA:protein ratio (∼1:50) facilitates the accumulation of large amorphous aggregates of p53C. By contrast, at a high RNA:protein ratio (≥1:8), the amorphous aggregation of p53C is clearly suppressed. Instead, amyloid p53C oligomers are formed that can act as seeds nucleating de novo aggregation of p53C. We propose that structured RNAs prevent p53C aggregation through surface interaction and play a significant role in the regulation of the tumor suppressor protein.

Keywords: RNA; amyloid; domain V of 23S rRNA; fluorescence; kinetics; p53; p53C; prion; protein aggregation; protein folding.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Humans
  • Protein Aggregates*
  • Protein Domains
  • RNA / chemistry*
  • RNA / genetics
  • RNA / metabolism
  • Tumor Suppressor Protein p53 / chemistry*
  • Tumor Suppressor Protein p53 / genetics
  • Tumor Suppressor Protein p53 / metabolism

Substances

  • Protein Aggregates
  • TP53 protein, human
  • Tumor Suppressor Protein p53
  • RNA