A graphene based frequency quadrupler

Sci Rep. 2017 Apr 18:7:46605. doi: 10.1038/srep46605.

Abstract

Benefit from exceptional electrical transport properties, graphene receives worldwide attentions, especially in the domain of high frequency electronics. Due to absence of effective bandgap causing off-state the device, graphene material is extraordinarily suitable for analog circuits rather than digital applications. With this unique ambipolar behavior, graphene can be exploited and utilized to achieve high performance for frequency multipliers. Here, dual-gated graphene field-effect transistors have been firstly used to achieve frequency quadrupling. Two Dirac points in the transfer curves of the designed GFETs can be observed by tuning top-gate voltages, which is essential to generate the fourth harmonic. By applying 200 kHz sinusoid input, arround 50% of the output signal radio frequency power is concentrated at the desired frequency of 800 kHz. Additionally, in suitable operation areas, our devices can work as high performance frequency doublers and frequency triplers. Considered both simple device structure and potential superhigh carrier mobility of graphene material, graphene-based frequency quadruplers may have lots of superiorities in regards to ultrahigh frequency electronic applications in near future. Moreover, versatility of carbon material system is far-reaching for realization of complementary metal-oxide-semiconductor compatible electrically active devices.

Publication types

  • Research Support, Non-U.S. Gov't