Exploiting Uniformly 13C-Labeled Carbohydrates for Probing Carbohydrate-Protein Interactions by NMR Spectroscopy

J Am Chem Soc. 2017 May 3;139(17):6210-6216. doi: 10.1021/jacs.7b01929. Epub 2017 Apr 21.

Abstract

NMR of a uniformly 13C-labeled carbohydrate was used to elucidate the atomic details of a sugar-protein complex. The structure of the 13C-labeled Manα(1-2)Manα(1-2)ManαOMe trisaccharide ligand, when bound to cyanovirin-N (CV-N), was characterized and revealed that in the complex the glycosidic linkage torsion angles between the two reducing-end mannoses are different from the free trisaccharide. Distances within the carbohydrate were employed for conformational analysis, and NOE-based distance mapping between sugar and protein revealed that Manα(1-2)Manα(1-2)ManαOMe is bound more intimately with its two reducing-end mannoses into the domain A binding site of CV-N than with the nonreducing end unit. Taking advantage of the 13C spectral dispersion of 13C-labeled carbohydrates in isotope-filtered experiments is a versatile means for a simultaneous mapping of the binding interactions on both, the carbohydrate and the protein.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Proteins / chemistry*
  • Bacterial Proteins / isolation & purification
  • Binding Sites
  • Carbohydrates / chemical synthesis
  • Carbohydrates / chemistry*
  • Carbon Isotopes
  • Carrier Proteins / chemistry*
  • Carrier Proteins / isolation & purification
  • Nuclear Magnetic Resonance, Biomolecular*

Substances

  • Bacterial Proteins
  • Carbohydrates
  • Carbon Isotopes
  • Carrier Proteins
  • cyanovirin N