* An Engineered Multiphase Three-Dimensional Microenvironment to Ensure the Controlled Delivery of Cyclic Strain and Human Growth Differentiation Factor 5 for the Tenogenic Commitment of Human Bone Marrow Mesenchymal Stem Cells

Tissue Eng Part A. 2017 Aug;23(15-16):811-822. doi: 10.1089/ten.TEA.2016.0407. Epub 2017 May 15.

Abstract

At present, injuries or rupture of tendons are treated by surgical repair or conservative approaches with unpredictable clinical outcome. Alternative strategies to repair tendon defects without the undesirable side effects associated with the current options are needed. With this in mind, a tissue engineering approach has gained considerable attention as a promising strategy. Here we investigated a synthetic three-dimensional (3D) microenvironment able to interact with stem cells and inducing, via coupled biochemical and physical signals, their early commitment toward the tenogenic lineage. This multiphase 3D construct consisted of a braided hyaluronate elastic band merged with human bone marrow mesenchymal stem cells (hBMSCs) and poly-lactic-co-glycolic acid microcarriers loaded with human growth differentiation factor 5 (hGDF-5) by means of fibrin hydrogel. The multiphase structure allowed hBMSC culture under cyclic strain within a microenvironment where a controlled amount of hGDF-5 was regularly delivered. The cooperative biochemical and physical stimuli induced significantly increased expression of tenogenic markers, such as collagen type I and III, decorin, scleraxis, and tenascin-C, within only 3 days of dynamic hBMSC culture. This approach opens exciting perspectives for future development of engineered tendon tissue substitutes.

Keywords: PLGA microcarriers; bioactive 3D scaffold; cyclic strain; human bone marrow mesenchymal stem cells; human growth differentiation factor 5.

MeSH terms

  • Adult
  • Cell Lineage* / drug effects
  • Cellular Microenvironment*
  • Elastic Modulus
  • Female
  • Gene Expression Regulation / drug effects
  • Growth Differentiation Factor 5 / pharmacology*
  • Humans
  • Male
  • Mesenchymal Stem Cells / cytology*
  • Mesenchymal Stem Cells / drug effects
  • Microspheres
  • Stress, Mechanical*
  • Tendons / cytology*
  • Tissue Engineering / methods*
  • Tissue Scaffolds / chemistry

Substances

  • GDF5 protein, human
  • Growth Differentiation Factor 5