Non-Fickian diffusion of methanol in mesoporous media: Geometrical restrictions or adsorption-induced?

J Chem Phys. 2017 Mar 28;146(12):124704. doi: 10.1063/1.4978944.

Abstract

The methanol mass transfer in the mesoporous silica and alumina/zeolite H-ZSM-5 grains has been studied. We demonstrate that the methanol diffusion is characterized as a time-fractional for both solids. Methanol transport occurs in the super-diffusive regime, which is faster comparing to the Fickian diffusion. We show that the fractional exponents defining the regime of transport are different for each porous grain. The difference between the values of the fractional exponents is associated with a difference in the energetic strength of the active sites of the surface of the media of different chemical nature as well as the geometrical restrictions of the porous media. Increasing by six-fold, the pore diameter leads to a 1.1 fold increase of the fractional exponent. Decreasing by three-fold, the methanol desorption energy results into the same increasing the fractional exponent. Our findings support that mainly the adsorption process, which is defined by the energetic disorder of the corresponding surface active sites, is likely to be the driving force of the abnormality of the mass transfer in the porous media. Therefore, the fractional exponent is a fundamental characteristic which is individual for each combination of the porous solid and diffusing species.