Prospective Fall-Risk Prediction Models for Older Adults Based on Wearable Sensors

IEEE Trans Neural Syst Rehabil Eng. 2017 Oct;25(10):1812-1820. doi: 10.1109/TNSRE.2017.2687100. Epub 2017 Mar 24.

Abstract

Wearable sensors can provide quantitative, gait-based assessments that can translate to point-of-care environments. This investigation generated elderly fall-risk predictive models based on wearable-sensor-derived gait data and prospective fall occurrence, and identified the optimal sensor type, location, and combination for single and dual-task walking. 75 individuals who reported six month prospective fall occurrence (75.2 ± 6.6 years; 47 non-fallers and 28 fallers) walked 7.62 m under single-task and dual-task conditions while wearing pressure-sensinginsoles and tri-axial accelerometers at the head, pelvis, and left and right shanks. Fall-risk classificationmodels were assessed for all sensor combinations and three model types: neural network, naïve Bayesian, and support vector machine. The best performing model used a neural network, dual-task gait data, and input parameters from head, pelvis, and left shank accelerometers (accuracy = 57%, sensitivity = 43%, and specificity = 65%). The best single-sensor model used a neural network, dual-task gait data, and pelvis accelerometer parameters (accuracy = 54%, sensitivity = 35%, and specificity = 67%). Single-task and dual-task gait assessments provided similar fall-risk model performance. Fall-risk predictive models developed for point-of-care environments should use multi-sensor dual-task gait assessment with the pelvis location considered if assessment is limited to a single sensor.

MeSH terms

  • Accelerometry / instrumentation*
  • Accidental Falls / statistics & numerical data*
  • Aged
  • Aged, 80 and over
  • Bayes Theorem
  • Biomechanical Phenomena
  • Female
  • Forecasting
  • Head
  • Humans
  • Leg
  • Machine Learning
  • Male
  • Models, Statistical
  • Neural Networks, Computer
  • Pelvis
  • Prospective Studies
  • Risk Assessment
  • Shoes
  • Support Vector Machine
  • Wearable Electronic Devices*