Optimized acoustic biochip integrated with microfluidics for biomarkers detection in molecular diagnostics

Biomed Microdevices. 2017 Sep;19(3):16. doi: 10.1007/s10544-017-0159-2.

Abstract

The development of integrated platforms incorporating an acoustic device as the detection element requires addressing simultaneously several challenges of technological and scientific nature. The present work was focused on the design of a microfluidic module, which, combined with a dual or array type Love wave acoustic chip could be applied to biomedical applications and molecular diagnostics. Based on a systematic study we optimized the mechanics of the flow cell attachment and the sealing material so that fluidic interfacing/encapsulation would impose minimal losses to the acoustic wave. We have also investigated combinations of operating frequencies with waveguide materials and thicknesses for maximum sensitivity during the detection of protein and DNA biomarkers. Within our investigations neutravidin was used as a model protein biomarker and unpurified PCR amplified Salmonella DNA as the model genetic target. Our results clearly indicate the need for experimental verification of the optimum engineering and analytical parameters, in order to develop commercially viable systems for integrated analysis. The good reproducibility of the signal together with the ability of the array biochip to detect multiple samples hold promise for the future use of the integrated system in a Lab-on-a-Chip platform for application to molecular diagnostics.

Keywords: Acoustic array; Biosensor; Lab-on-a-Chip; Love wave device; Microfluidics; Molecular diagnostics.

MeSH terms

  • Acoustics*
  • Biomarkers / analysis
  • Biosensing Techniques / instrumentation*
  • Equipment Design
  • Lab-On-A-Chip Devices*
  • Molecular Diagnostic Techniques / instrumentation*

Substances

  • Biomarkers