Kinetic modeling of electron transfer reactions in photosystem I complexes of various structures with substituted quinone acceptors

Photosynth Res. 2017 Sep;133(1-3):185-199. doi: 10.1007/s11120-017-0366-y. Epub 2017 Mar 28.

Abstract

The reduction kinetics of the photo-oxidized primary electron donor P700 in photosystem I (PS I) complexes from cyanobacteria Synechocystis sp. PCC 6803 were analyzed within the kinetic model, which considers electron transfer (ET) reactions between P700, secondary quinone acceptor A1, iron-sulfur clusters and external electron donor and acceptors - methylviologen (MV), 2,3-dichloro-naphthoquinone (Cl2NQ) and oxygen. PS I complexes containing various quinones in the A1-binding site (phylloquinone PhQ, plastoquinone-9 PQ and Cl2NQ) as well as F X-core complexes, depleted of terminal iron-sulfur F A/F B clusters, were studied. The acceleration of charge recombination in F X-core complexes by PhQ/PQ substitution indicates that backward ET from the iron-sulfur clusters involves quinone in the A1-binding site. The kinetic parameters of ET reactions were obtained by global fitting of the P700+ reduction with the kinetic model. The free energy gap ΔG 0 between F X and F A/F B clusters was estimated as -130 meV. The driving force of ET from A1 to F X was determined as -50 and -220 meV for PhQ in the A and B cofactor branches, respectively. For PQ in A1A-site, this reaction was found to be endergonic (ΔG 0 = +75 meV). The interaction of PS I with external acceptors was quantitatively described in terms of Michaelis-Menten kinetics. The second-order rate constants of ET from F A/F B, F X and Cl2NQ in the A1-site of PS I to external acceptors were estimated. The side production of superoxide radical in the A1-site by oxygen reduction via the Mehler reaction might comprise ≥0.3% of the total electron flow in PS I.

Keywords: Electron transfer; External electron acceptor; Kinetic modeling; Midpoint redox potentials; Photosystem I; Superoxide radical production.

MeSH terms

  • Binding Sites
  • Electron Transport
  • Electrons*
  • Kinetics
  • Models, Molecular*
  • Oxidation-Reduction
  • Photosystem I Protein Complex / chemistry*
  • Photosystem I Protein Complex / metabolism*
  • Plastoquinone / chemistry
  • Plastoquinone / metabolism
  • Quinones / metabolism*
  • Thermodynamics

Substances

  • Photosystem I Protein Complex
  • Quinones
  • Plastoquinone