Alterations in VEGF expression induced by antidepressant drugs in female rats under chronic social stress

Exp Ther Med. 2017 Feb;13(2):723-730. doi: 10.3892/etm.2017.4022. Epub 2017 Jan 2.

Abstract

Vascular endothelial growth factor (VEGF) is thought to serve a role in neurogenesis and the stress response. Although a definite link between the action of antidepressants and VEGF has not been identified, it is assumed that VEGF, as a neurotrophic factor, serves an important role in the effects of antidepressant treatment. To examine this, the present study subjected adult female rats to four weeks of social instability stress and measured the effect of antidepressant treatment on the expression of VEGF. Firstly, endocrine markers of stress and body weight were measured in parallel with behavioral tests prior to and following subjection to stress. Then, the effect of 28-day daily treatment with desipramine (DMI; 10 mg/kg), fluoxetine (5 mg/kg) or tianeptine (10 mg/kg) on the number of copies of VEGF mRNA in the amygdala, hippocampus and hypothalamus, and on serum VEGF protein levels, of rats subjected to chronic stress was determined. In addition, the weight of the adrenal glands was measured following subjection to stress. Exposure to chronic stress was found to increase the rats' sucrose preference, and diminish their tendency for general exploration and time spent in the open. The relative adrenal weights of the stressed rats were significantly increased compared with the control. Plasma concentrations of corticosterone and adrenocorticotropic hormone were not significantly augmented. In addition, the present study identified that stress elevated VEGF mRNA expression in all studied neural structures. Furthermore, the results identified that the stress-induced increase in VEGF mRNA expression in the amygdala and hypothalamus was attenuated by long-term administration of DMI. Conversely, a decrease in serum VEGF concentration was observed in stressed rats, which was not reversed by treatment with antidepressants. In conclusion, the current study suggests that under conditions of stress, VEGF serves a role in the mechanism of action of DMI, through modulating activity of the norepinephrine system.

Keywords: antidepressants; blood; brain structures; chronic stress; female rats; vascular endothelial growth factor.