Decreased mRNA expression levels of DNA methyltransferases type 1 and 3A in systemic lupus erythematosus

Rheumatol Int. 2017 May;37(5):775-783. doi: 10.1007/s00296-017-3711-8. Epub 2017 Mar 27.

Abstract

Objectives: Systemic lupus erythematosus (SLE) is a chronic relapsing autoimmune disease characterized by the presence of autoantibodies directed against nuclear antigens and by chronic inflammation. Although the etiology of SLE remains unclear, the influence of environment factors, which is largely reflected by the epigenetic mechanisms, with DNA methylation changes in particular, is generally considered as main players in the pathogenesis of SLE. We studied DNA methyltransferases' (DNMTs) type 1, 3A and 3B transcript levels in peripheral blood mononuclear cells from patients diagnosed with systemic lupus erythematosus and from the healthy control subjects. Furthermore, the association of DNMT1, DNMT3A, and DNMT3B mRNA levels with gender, age, and major clinical manifestations was analyzed.

Methods: Peripheral blood mononuclear cells (PBMCs) were isolated from 32 SLE patients and 40 healthy controls. Reverse transcription and real-time quantitative polymerase chain reaction (RT-qPCR) analyses were used to determine DNMT1, DNMT3A, and DNMT3B mRNA expression levels.

Results: Significantly lower DNMT1 (p = 0.015543) and DNMT3A (p = 0.003652) transcript levels in SLE patients were observed compared with healthy controls. Nevertheless, the DNMT3B mRNA expression levels were markedly lower compared with DNMT1 and DNMT3A, both in PBMCs from affected patients and those from control subjects. Furthermore, the DNMT1 transcript levels were positively correlated with SLE disease activity index (SLEDAI) (r s = 0.4087, p = 0.020224), while the DNMT3A transcript levels were negatively correlated with patients age (r s = -0.3765, p = 0.03369).

Conclusions: Our analyses confirmed the importance of epigenetic alterations in SLE etiology. Moreover, our results suggest that the presence of some clinical manifestations, such as phototosensitivity and arthritis, might be associated with the dysregulation of DNA methyltransferases' mRNA expression levels.

Keywords: DNA methylation; Epigenetic alterations; SLE.

MeSH terms

  • Adult
  • DNA (Cytosine-5-)-Methyltransferase 1
  • DNA (Cytosine-5-)-Methyltransferases / genetics
  • DNA (Cytosine-5-)-Methyltransferases / metabolism*
  • DNA Methylation
  • DNA Methyltransferase 3A
  • DNA Methyltransferase 3B
  • Female
  • Humans
  • Leukocytes, Mononuclear / metabolism
  • Lupus Erythematosus, Systemic / genetics
  • Lupus Erythematosus, Systemic / metabolism*
  • Male
  • Middle Aged
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism*
  • Young Adult

Substances

  • DNMT3A protein, human
  • RNA, Messenger
  • DNA (Cytosine-5-)-Methyltransferase 1
  • DNA (Cytosine-5-)-Methyltransferases
  • DNA Methyltransferase 3A
  • DNMT1 protein, human