Characterization of the temporal and spatial expression of wheat (Triticum aestivum L.) plant height at the QTL level and their influence on yield-related traits

Theor Appl Genet. 2017 Jun;130(6):1235-1252. doi: 10.1007/s00122-017-2884-6. Epub 2017 Mar 27.

Abstract

The temporal and spatial expression patterns of stable QTL for plant height and their influences on yield were characterized. Plant height (PH) is a complex trait in wheat (Triticum aestivum L.) that includes the spike length (SL) and the internode lengths from the first to the fifth internode, which are counted from the top and abbreviated as FIRITL, SECITL, THIITL, FOUITL, and FIFITL, respectively. This study identified eight putative additive quantitative trait loci (QTL) for PH. In addition, unconditional and conditional QTL mapping were used to analyze the temporal and spatial expression patterns of five stable QTL for PH. qPh-3A mainly regulated SL, FIRITL, and FIFITL to affect PH during the booting-heading stage (BS-HS); qPh-3D regulated all internode lengths to affect PH, especially during the BS-HS; before HS, qPh-4B mainly affected FIRITL, SECITL, THIITL, and FOUITL and qPh-5A.1 mainly affected SECITL, THIITL, and FOUITL to regulate PH; and qPh-6B mainly regulated FIRITL to affect the PH after the booting stage (BS). qPhdv-4B, a QTL for the response of PH to nitrogen stress, was stable and co-localized with qPh-4B. All five stable QTL, except for qPh-3A, were related to the 1000 kernel weight and yield per plant. Regions of qPh-3A, qPh-3D, qPh-4B, qPh-5A.1, and qPh-6B showed synteny to parts of rice chromosomes 1, 1, 3, 9, and 2, respectively. Based on comparative genomics analysis, Rht-B1b was cloned and mapped in the CI of qPh-4B. This report provides useful information for fine mapping of the stable QTL for PH and the genetic improvement of wheat plant type.

MeSH terms

  • Chromosome Mapping
  • Phenotype
  • Quantitative Trait Loci*
  • Spatio-Temporal Analysis
  • Triticum / genetics*
  • Triticum / growth & development*