Resolving Ultrafast Photoinduced Deactivations in Water-Solvated Pyrimidine Nucleosides

J Phys Chem Lett. 2017 Apr 20;8(8):1777-1783. doi: 10.1021/acs.jpclett.7b00316. Epub 2017 Apr 7.

Abstract

For the first time, ultrafast deactivations of photoexcited water-solvated pyrimidine nucleosides are mapped employing hybrid QM(CASPT2)/MM(AMBER) optimizations that account for explicit solvation, sugar effects, and dynamically correlated potential energy surfaces. Low-energy S1/S0 ring-puckering and ring-opening conical intersections (CIs) are suggested to drive the ballistic coherent subpicosecond (<200 fs) decays observed in each pyrimidine, the energetics controlling this processes correlating with the lifetimes observed. A second bright 1π2π* state, promoting excited-state population branching and leading toward a third CI with the ground state, is proposed to be involved in the slower ultrafast decay component observed in Thd/Cyd. The transient spectroscopic signals of the competitive deactivation channels are computed for the first time. A general unified scheme for ultrafast deactivations, spanning the sub- to few-picosecond time domain, is eventually delivered, with computed data that matches the experiments and elucidates the intrinsic photoprotection mechanism in solvated pyrimidine nucleosides.