Is the Ergogenicity of Caffeine Affected by Increasing Age? The Direct Effect of a Physiological Concentration of Caffeine on the Power Output of Maximally Stimulated EDL and Diaphragm Muscle Isolated from the Mouse

J Nutr Health Aging. 2017;21(4):440-448. doi: 10.1007/s12603-016-0832-9.

Abstract

Introduction: Caffeine is a well-established performance enhancing nutritional supplement in a young healthy population, however far less is known about how its ergogenicity is affected by increasing age. A recent review has highlighted the value of studies examining the direct effect of caffeine on isolated skeletal muscle contractility, but the present work is the first to assess the direct effect of 70µM caffeine (physiological maximum) on the maximal power output of isolated mammalian muscle from an age range representing developmental to early ageing.

Method: Female CD1 mice were aged to 3, 10, 30 and 50 weeks (n = 20 in each case) and either whole EDL or a section of the diaphragm was isolated and maximal power output determined using the work loop technique. Once contractile performance was maximised, each muscle preparation was treated with 70µM caffeine and its contractile performance was measured for a further 60 minutes.

Results: In both mouse EDL and diaphragm 70µM caffeine treatment resulted in a significant increase in maximal muscle power output that was greatest at 10 or 30 weeks (up to 5% and 6% improvement respectively). This potentiation of maximal muscle power output was significantly lower at the early ageing time point, 50 weeks (up to 3% and 2% improvement respectively), and in mice in the developmental stage, at 3 weeks of age (up to 1% and 2% improvement respectively).

Conclusion: Uniquely, the present findings indicate a reduced age specific sensitivity to the performance enhancing effect of caffeine in developmental and aged mice which is likely to be attributed to age related muscle growth and degradation, respectively. Importantly, the findings indicate that caffeine may still provide a substantial ergogenic aid in older populations which could prove important for improving functional capacity in tasks of daily living.

Keywords: Dynapenia; ergogenic aid; force; sarcopenia; skeletal muscle; work loop.

MeSH terms

  • Aging
  • Animals
  • Caffeine / pharmacology*
  • Diaphragm / physiology*
  • Female
  • Mice
  • Muscle Contraction / physiology*
  • Muscle Fatigue / drug effects*
  • Performance-Enhancing Substances / pharmacology*
  • Sarcopenia

Substances

  • Performance-Enhancing Substances
  • Caffeine