Effects of repeated use and resterilization on structural and functional integrity of microwave ablation antennas

Am J Vet Res. 2017 Apr;78(4):508-516. doi: 10.2460/ajvr.78.4.508.

Abstract

OBJECTIVE To determine effects of repeated use and resterilization on structural and functional integrity of microwave ablation (MWA) antennas. SAMPLE 17 cooled-shaft MWA antennas (3 groups of 5 antennas/group and 2 control antennas). PROCEDURES 1, 2, and 3 ablations in the livers of bovine cadavers were performed at the maximum recommended settings. Antennas were cleaned and sterilized in hydrogen peroxide plasma, and the process was repeated (reprocessing cycle; n = 6). Control antennas were only sterilized (6 times). Aerobic and anaerobic bacterial cultures were performed, and antennas were microscopically assessed for damage. RESULTS 6 cycles were completed. Thirteen of 15 MWA antennas remained functional for up to 4 cycles, 10 were functional after 5 cycles, and only 7 were functional after 6 cycles. Progressive tearing of the silicone coating of the antennas was observed, with a negative effect of the number of cycles for silicone tearing. Size of the ablation zone decreased mildly over time after cycles 5 and 6; however, this was not considered clinically relevant. No significant changes in the shape of ablation zones were detected. All cultures yielded negative results, except for an isolated case, which was considered a contaminant. CONCLUSIONS AND CLINICAL RELEVANCE Structural and functional integrity of the microwave antennas remained acceptable during repeated use and reprocessing for up to 4 cycles. However, there was a decrease in functional integrity at cycles 5 and 6. We suggest that these microwave antennas be subjected to > 3 reprocessing cycles. Antennas should be carefully examined before reuse.

MeSH terms

  • Ablation Techniques / economics
  • Ablation Techniques / instrumentation*
  • Animals
  • Cadaver
  • Cattle
  • Equipment Reuse
  • Hydrogen Peroxide
  • Liver
  • Microwaves*
  • Sterilization*

Substances

  • Hydrogen Peroxide