Accuracy Validation of an Automated Method for Prostate Segmentation in Magnetic Resonance Imaging

J Digit Imaging. 2017 Dec;30(6):782-795. doi: 10.1007/s10278-017-9964-7.

Abstract

Three dimensional (3D) manual segmentation of the prostate on magnetic resonance imaging (MRI) is a laborious and time-consuming task that is subject to inter-observer variability. In this study, we developed a fully automatic segmentation algorithm for T2-weighted endorectal prostate MRI and evaluated its accuracy within different regions of interest using a set of complementary error metrics. Our dataset contained 42 T2-weighted endorectal MRI from prostate cancer patients. The prostate was manually segmented by one observer on all of the images and by two other observers on a subset of 10 images. The algorithm first coarsely localizes the prostate in the image using a template matching technique. Then, it defines the prostate surface using learned shape and appearance information from a set of training images. To evaluate the algorithm, we assessed the error metric values in the context of measured inter-observer variability and compared performance to that of our previously published semi-automatic approach. The automatic algorithm needed an average execution time of ∼60 s to segment the prostate in 3D. When compared to a single-observer reference standard, the automatic algorithm has an average mean absolute distance of 2.8 mm, Dice similarity coefficient of 82%, recall of 82%, precision of 84%, and volume difference of 0.5 cm3 in the mid-gland. Concordant with other studies, accuracy was highest in the mid-gland and lower in the apex and base. Loss of accuracy with respect to the semi-automatic algorithm was less than the measured inter-observer variability in manual segmentation for the same task.

Keywords: 3D segmentation; Automatic segmentation; Endorectal receive coil; Image segmentation; Magnetic resonance imaging; Validation.

Publication types

  • Validation Study

MeSH terms

  • Algorithms
  • Humans
  • Image Processing, Computer-Assisted / methods*
  • Imaging, Three-Dimensional / methods*
  • Magnetic Resonance Imaging / methods*
  • Male
  • Observer Variation
  • Pattern Recognition, Automated / methods*
  • Prostate / diagnostic imaging
  • Prostatic Neoplasms / diagnostic imaging*
  • Reproducibility of Results