Development of genetic and genomic evaluation for wellness traits in US Holstein cows

J Dairy Sci. 2017 Jan;100(1):428-438. doi: 10.3168/jds.2016-11520. Epub 2016 Oct 27.

Abstract

In March 2016, Zoetis Genetics offered the first commercially available evaluation for wellness traits of Holstein dairy cattle. Phenotypic data on health events, pedigree, and genotypes were collected directly from producers upon obtaining their permission. Among all recorded health events, 6 traits were chosen to be included in the evaluation: mastitis, metritis, retained placenta, displaced abomasum, ketosis, and lameness. Each trait was defined as a binary event, having a value of 1 if a cow has been recorded with a disorder at any point during the lactation and zero otherwise. The number of phenotypic records ranged from 1.8 million for ketosis to 4.1 million for mastitis. Over 14 million pedigree records and 114,216 genotypes were included in the evaluation. All traits were analyzed using univariate threshold animal model with repeated observations, including fixed effect of parity and random effects of herd by year by season of calving, animal, and permanent environment. A total of 45,425 single nucleotide polymorphisms were used in the genomic analyses. Animals genotyped with low-density chips were imputed to the required number of single nucleotide polymorphisms. All analyses were based on the single-step genomic BLUP, a method that combines phenotype, pedigree, and genotype information. Predicted transmitting abilities were expressed in percentage points as a difference from the average estimated probability of a disorder in the base population. Reliabilities of breeding values were obtained by approximation based on partitioning of a function of reliability into contributions from records, pedigree, and genotypes. Reliabilities of genomic predicted transmitting abilities for young genotyped and pedigreed females without recorded health events had average values between 50.2% (displaced abomasum) and 51.9% (mastitis). Genomic predictions for wellness traits can provide new information about an animal's genetic potential for health and new selection tools for dairy wellness improvement.

Keywords: dairy cattle; reliability; single-step genomic BLUP; wellness traits.

MeSH terms

  • Animals
  • Breeding
  • Cattle
  • Cattle Diseases / epidemiology*
  • Female
  • Genomics
  • Lactation / genetics*
  • Models, Genetic
  • Phenotype
  • Reproducibility of Results