Engineering Nanoscale Iron Oxides for Uranyl Sorption and Separation: Optimization of Particle Core Size and Bilayer Surface Coatings

ACS Appl Mater Interfaces. 2017 Apr 19;9(15):13163-13172. doi: 10.1021/acsami.7b01042. Epub 2017 Apr 4.

Abstract

Herein, we describe engineered superparamagnetic iron oxide nanoparticles (IONPs) as platform materials for enhanced uranyl (UO22+) sorption and separation processes under environmentally relevant conditions. Specifically, monodispersed 8-25 nm iron oxide (magnetite, Fe3O4) nanoparticles with tailored organic acid bilayered coatings have been systematically evaluated and optimized to bind, and thus remove, uranium from water. The combined nonhydrolytic synthesis and bilayer phase transfer material preparation methods yield highly uniform and surface tailorable IONPs, which allow for direct evaluation of the size-dependent and coating-dependent sorption capacities of IONPs. Optimized materials demonstrate ultrahigh sorption capacities (>50% by wt/wt) at pH 5.6 for 8 nm oleic acid (OA) bilayer and sodium monododecyl phosphate (SDP) surface-stabilized IONPs. Synchrotron-based X-ray absorption spectroscopy shows that iron oxide core particle size and stabilizing surface functional group(s) substantially affect U(VI)-removal mechanisms, specifically the ratio of uptake via adsorption versus reduction to U(IV). Taken together, tunable size and surface functionality, high colloidal stability, and favorable affinity toward uranium provide distinct synergistic advantage(s) for the application of bilayered IONPs as part of the next-generation material-based uranium recovery, remediation, and sensing technologies.

Keywords: XAFS; bilayer surface coating; critical coagulation concentration; environmental remediation; iron oxide nanoparticles (IONPs); nanoparticle stability; uranium reduction; uranium sorption.