Hybrid Nanostructures Containing Sulfadiazine Modified Chitosan as Antimicrobial Drug Carriers

Nanomaterials (Basel). 2016 Nov 10;6(11):207. doi: 10.3390/nano6110207.

Abstract

Chitosan (CH) nanofibrous structures containing sulfadiazine (SDZ) or sulfadiazine modified chitosan (SCH) in the form of functional nanoparticles attached to nanofibers (hybrid nanostructures) were obtained by mono-axial and coaxial electrospinning. The mono-axial design consisted of a SDZ/CH mixture solution fed through a single nozzle while the coaxial design consisted of SCH and CH solutions separately supplied to the inner and outer nozzle (or in reverse order). The CH ability to form nanofibers assured the formation of a nanofiber mesh, while SDZ and SCH, both in form of suspensions in the electrospun solution, assured the formation of active nanoparticles which remained attached to the CH nanofiber mesh after the electrospinning process. The obtained nanostructures were morphologically characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The SDZ release profiles and kinetics were analyzed. The SDZ or SCH nanoparticles loosely attached at the surface of the nanofibers, provide a burst release in the first 20 min, which is important to stop the possible initial infection in a wound, while the SDZ and SCH from the nanoparticles which are better confined (or even encapsulated) into the CH nanofibers would be slowly released with the erosion/disruption of the CH nanofiber mesh.

Keywords: chitosan; electrospinning; nanostructures; release kinetics; sulfadiazine.