Cellulase production using natural medium and its application on enzymatic hydrolysis of thermo chemically pretreated biomass

3 Biotech. 2016 Dec;6(2):139. doi: 10.1007/s13205-016-0465-z. Epub 2016 Jun 21.

Abstract

Lignocellulosic bioethanol is an important renewable fuel for transportation purpose. Commercial production of lignocellulosic bioethanol mainly depends on cost of cellulase production, efficient pretreatment and enzymatic hydrolysis process. In the present study cellulase production from Aspergillus niger under submerged fermentation (SmF) was optimized using coconut water as natural medium. Maximum cellulase production (0.53 IU/mL) was achieved within 3 days of incubation using 8 % (w/v) waste paper and 0.07 % (w/v) glucose. The produced cellulase was applied for enzymatic hydrolysis of thermo chemically (dilute acid and alkaline) pretreated biomass (equal mixture of wheat straw and cotton stalk). Optimization of dilute acid and dilute alkaline pretreatment showed dilute alkaline pretreatment was more effective for higher reducing sugar production. Maximum reducing sugar yield of 398.0 mg/g dry biomass was obtained from dilute alkaline pretreated biomass (using 0.5 M sodium hydroxide, 8 % substrate concentration, 120 °C temperature and 20 min of incubation time). The presence of difference sugars (glucose, xylose, mannose, maltose) in the saccharified sample was confirmed by thin layer chromatographic analysis. The effectiveness of dilute alkaline pretreatment was further confirmed by biochemical composition (cellulose, hemicelluloses and lignin) and structural (furrier transformed infrared spectroscopic and scanning electron microscopic) analysis. The above result can be useful for commercial production of lignocellulosic bioethanol.

Keywords: Cellulase; FTIR; Lignocellulosic bioethanol; SEM; Thermochemical pretreatment.