Effect of laser pulse propagation on ultrafast magnetization dynamics in a birefringent medium

J Phys Condens Matter. 2017 Apr 26;29(16):164004. doi: 10.1088/1361-648X/aa5e94. Epub 2017 Mar 21.

Abstract

Light propagation effects can strongly influence the excitation and the detection of laser-induced magnetization dynamics. We investigated experimentally and analytically the effects of crystallographic linear birefringence on the excitation and detection of ultrafast magnetization dynamics in the rare-earth orthoferrites (Sm0.5Pr0.5)FeO3 and (Sm0.55Tb0.45)FeO3, which possess weak and strong linear birefringence, respectively. Our finding is that the effect of linear birefringence on the result of a magneto-optical pump-probe experiment strongly depends on the mechanism of excitation. When magnetization dynamics, probed by means of the Faraday effect, is excited via a rapid, heat-induced phase transition, the measured rotation of the probe pulse polarization is strongly suppressed due to the birefringence. This contrasts with the situation for magnetization dynamics induced by the ultrafast inverse Faraday effect, where the corresponding probe polarization rotation values were larger in the orthoferrite with strong linear birefringence. We show that this striking difference results from an interplay between the polarization transformations experienced by pump and probe pulses in the birefringent medium.