Oxygen-dependent electron transport and protection from photoinhibition in leaves of tropical tree species

Planta. 1996 Apr;198(4):580-587. doi: 10.1007/BF00262645. Epub 2017 Mar 18.

Abstract

The roles of photorespiration and the Mehlerperoxidase pathway in sustaining electron transport and protection from photoinhibition were studied in outer canopy leaves of two species of tropical trees: the drought-deciduous Pseudobombax septenatum (Jacq.) Dug. and the evergreen Ficus insipida Willd. Ficus had a higher photosynthetic capacity than Pseudobombax and also a greater capacity for light-dependent electron transport under photorespiratory conditions (in the absence of CO2). As a consequence, in the absence of CO2, Ficus was able to maintain a largely oxidized electron-transport chain at higher photon flux densities than Pseudobombax. Under the same light conditions, photoinhibition (reduction in Fv/Fm) was always greater in Pseudobombax than Ficus, was increased when leaves were exposed to 2% O2 in nitrogen compared to 21% O2 in CO2-free air, but was not increased by the absence of CO2. Rates of electron transport due to the Mehler-peroxidase pathway (assessed in 2% O2 in nitrogen) ranged between 16-40 μmol · m-2·s-1 in both species. As the dry season approached and Pseudobombax neared leaf senescence there was a decline in the capacity for photorespiratory flux to maintain electron transport in Pseudobombax, but not in Ficus. Ratios of light-dependent electron transport to net CO2 fixation for Pseudobombax, Ficus and two other species in the field, Luehea seemannii Tr. & Planch, and Didymopanax morototoni (Aubl.) Dec. & Planch., ranged from 6.2 (Ficus) to 16.7 (Pseudobombax). High in-situ rates of photorespiration combined with the decreased capacity of Pseudobombax for photorespiratory flux as the dry season approached indicates a decreased capacity to protect against photooxidative damage. This may contribute to the promotion of leaf senescence in Pseudobombax during the transition from wet to dry season.

Keywords: Electron transport (oxygen dependent); Photoinhibition; Tropical tree species.