Temperature change and complex dynamics

Oecologia. 1997 Nov;112(4):543-550. doi: 10.1007/s004420050343.

Abstract

Density-dependent factors, such as population growth rate and migration, influence dynamic behaviour in ecological models. Temperature, an abiotic and density-independent factor, is also an important determinant of insect population growth. We investigated the endogenous dynamics of a density-dependent response-surface model that included temperature, based on time series for two aphid species. We investigated the effects of temperature and random noise on the model dynamics. In most cases, an increase in temperature resulted in a higher predicted equilibrium density; it could induce complex dynamics. Noise at the level of the natural variation in temperature resulted in extinctions in some models. Our results from these models indicate that aphid populations might become more abundant, and less stable in some circumstances, if there is climate warming.

Keywords: Aphids; Key words Nonlinear dynamics; Models; Time series analysis.