Environmental monitoring and assessment of landscape dynamics in southern coast of the Caspian Sea through intensity analysis and imprecise land-use data

Environ Monit Assess. 2017 Apr;189(4):163. doi: 10.1007/s10661-017-5883-9. Epub 2017 Mar 15.

Abstract

A hierarchical intensity analysis of land-use change is applied to evaluate the dynamics of a coupled urban coastal system in Rasht County, Iran. Temporal land-use layers of 1987, 1999, and 2011 are employed, while spatial accuracy metrics are only available for 2011 data (overall accuracy of 94%). The errors in 1987 and 1999 layers are unknown, which can influence the accuracy of temporal change information. Such data were employed to examine the size and the type of errors that could justify deviations from uniform change intensities. Accordingly, errors comprising 3.31 and 7.47% of 1999 and 2011 maps, respectively, could explain all differences from uniform gains and errors including 5.21 and 1.81% of 1987 and 1999 maps, respectively, could explain all deviations from uniform losses. Additional historical information is also applied for uncertainty assessment and to separate probable map errors from actual land-use changes. In this regard, historical processes in Rasht County can explain different types of transition that are either consistent or inconsistent to known processes. The intensity analysis assisted in identification of systematic transitions and detection of competitive categories, which cannot be investigated through conventional change detection methods. Based on results, built-up area is the most active gaining category in the area and wetland category with less areal extent is more sensitive to intense land-use change processes. Uncertainty assessment results also indicated that there are no considerable classification errors in temporal land-use data and these imprecise layers can reliably provide implications for informed decision making.

Keywords: Change detection; Coupled urban coastal system; Intensity analysis; Iran; Uniform change intensity.

MeSH terms

  • Agriculture
  • Conservation of Natural Resources
  • Environmental Monitoring / methods*
  • Geographic Information Systems
  • Iran
  • Wetlands