Direct Time-Domain View of Auger Recombination in a Semiconductor

Phys Rev Lett. 2017 Feb 24;118(8):087402. doi: 10.1103/PhysRevLett.118.087402. Epub 2017 Feb 24.

Abstract

The radiationless recombination of electron-hole pairs in semiconductors is detrimental to optoelectronic technologies. A prominent mechanism is Auger recombination, in which nonradiative recombination occurs efficiently by transferring the released energy-momentum to a third charge carrier. Here we use femtosecond photoemission to directly detect Auger electrons as they scatter into energy and momentum spaces from Auger recombination in a model semiconductor, GaSb. The Auger rate is modulated by a coherent phonon mode at 2 THz, confirming phonon participation in momentum conservation. The commonly assumed Auger rate constant is found not to be a constant, but rather decreases by 4 orders of magnitude as hot electrons cool down by ∼90 meV. These findings provide quantitative guidance in understanding Auger recombination and in designing materials for efficient optoelectronics.