Analyzing the efficiency of short-term air quality plans in European cities, using the CHIMERE air quality model

Air Qual Atmos Health. 2017;10(2):235-248. doi: 10.1007/s11869-016-0427-y. Epub 2016 Sep 10.

Abstract

Regional and local authorities have the obligation to design air quality plans and assess their impacts when concentration levels exceed the limit values. Because these limit values cover both short- (day) and long-term (year) effects, air quality plans also follow these two formats. In this work, we propose a methodology to analyze modeled air quality forecast results, looking at emission reduction for different sectors (residential, transport, agriculture, etc.) with the aim of supporting policy makers in assessing the impact of short-term action plans. Regarding PM10, results highlight the diversity of responses across European cities, in terms of magnitude and type that raises the necessity of designing area-specific air quality plans. Action plans extended from 1 to 3 days (i.e., emissions reductions applied for 24 and 72 h, respectively) point to the added value of trans-city coordinated actions. The largest benefits are seen in central Europe (Vienna, Prague) while major cities (e.g., Paris) already solve a large part of the problem on their own. Eastern Europe would particularly benefit from plans based on emission reduction in the residential sectors; while in northern cities, agriculture seems to be the key sector on which to focus attention. Transport is playing a key role in most cities whereas the impact of industry is limited to a few cities in south-eastern Europe. For NO2, short-term action plans focusing on traffic emission reductions are efficient in all cities. This is due to the local character of this type of pollution. It is important, however, to stress that these results remain dependent on the selected months available for this study.

Keywords: Air quality modeling; Air quality planning; Emission scenarios; Forecast; NO2; PM10.