A novel Gossypium barbadense ERF transcription factor, GbERFb, regulation host response and resistance to Verticillium dahliae in tobacco

Physiol Mol Biol Plants. 2017 Jan;23(1):125-134. doi: 10.1007/s12298-016-0402-y. Epub 2016 Dec 3.

Abstract

Ethylene-responsive factors (ERFs) are commonly considered to play an important role in pathogen defense responses. However, only few of ERF members have been characterized in Sea island cotton (Gossypium barbadense). Here, we reported a novel AP2/ERF transcription factors gene, named GbERFb which was cloned and identified from Sea island cotton by RACE. The expression of GbERFb was significantly induced by treatments with ethylene, Methyl jasmonate, salicylic acid, wounding, H2O2 and Verticillium dahliae (V. dahliae) infection. Bioinformatics analysis showed that GbERFb protein containing a conserved ERF DNA binding domain and a nuclear localization signal sequence, belonged to IXb subgroup of the ERF family. Further experiments demonstrated that GbERFb could bind the GCC box cis-acting element and interact with GbMAPKb (MAP kinase) directly in yeast. Over-expression of GbERFb in tobacco could increase the disease resistance to V. dahliae. The results suggest that the GbERFb, a new AP2/ERF transcription factor, could enhance the resistance to V. dahliae and be useful in improvement of crop resistance to pathogenes.

Keywords: Disease resistance; ERF transcription factors; Gossypium barbadense; Verticillium dahliae.