Meta-nanocavity model for dynamic super-resolution fluorescent imaging based on the plasmonic structure illumination microscopy method

Opt Express. 2017 Feb 20;25(4):3863-3874. doi: 10.1364/OE.25.003863.

Abstract

Biological research requires dynamic and wide-field optical microscopy with resolution down to nanometer to study the biological process in a sub-cell or single molecular level. To address this issue, we propose a dynamic wide-field optical nanoimaging method based on a meta-nanocavity platform (MNCP) model which can be incorporated in micro/nano-fluidic systems so that the samples to be observed can be confined in a nano-scale space for the ease of imaging. It is found that this platform can support standing wave surface plasmons (SW-SPs) interference pattern with a period of 105 nm for a 532 nm incident wavelength. Furthermore, the potential application of the NCP for wide-field super-resolution imaging was discussed and the simulation results show that an imaging resolution of sub-80 nm can be achieved.