Ruling out static latent homophily in citation networks

Scientometrics. 2017;110(2):765-777. doi: 10.1007/s11192-016-2194-9. Epub 2016 Dec 3.

Abstract

Citation and coauthor networks offer an insight into the dynamics of scientific progress. We can also view them as representations of a causal structure, a logical process captured in a graph. From a causal perspective, we can ask questions such as whether authors form groups primarily due to their prior shared interest, or if their favourite topics are 'contagious' and spread through co-authorship. Such networks have been widely studied by the artificial intelligence community, and recently a connection has been made to nonlocal correlations produced by entangled particles in quantum physics-the impact of latent hidden variables can be analyzed by the same algebraic geometric methodology that relies on a sequence of semidefinite programming (SDP) relaxations. Following this trail, we treat our sample coauthor network as a causal graph and, using SDP relaxations, rule out latent homophily as a manifestation of prior shared interest only, leading to the observed patternedness. By introducing algebraic geometry to citation studies, we add a new tool to existing methods for the analysis of content-related social influences.

Keywords: Causal network; Citation network; Hidden variables; Semidefinite programming; Sum-of-squares decomposition.