Anthropogenic mercury deposition in Flin Flon Manitoba and the Experimental Lakes Area Ontario (Canada): A multi-lake sediment core reconstruction

Sci Total Environ. 2017 May 15:586:685-695. doi: 10.1016/j.scitotenv.2017.02.046. Epub 2017 Feb 21.

Abstract

High-resolution records of anthropogenic mercury (Hg) deposition were constructed from 9 lakes located 5-75km from the Flin Flon, Manitoba smelter (formerly one of North America's largest atmospheric Hg point sources) and 5 lakes in Experimental Lakes Area (ELA), Ontario; a region remote from major Hg point sources. Anthropogenic Hg deposition, as both a flux and inventory, was determined after accounting for lake-specific natural Hg background concentrations, changes in sedimentation and sediment focusing. Results show that records of anthropogenic flux and inventory of Hg were remarkably consistent among the ELA lakes, but varied by 2 orders of magnitude among Flin Flon lakes. The relation between Hg inventories (normalized for prevailing wind direction) and distance from the smelter was used to estimate the total Hg fallout within a 50km radius in 5year time-steps, thus providing a quantitative spatial-temporal Hg depositional history for the Flin Flon region. The same relation solved for 8 cardinal directions weighted by the inverse of the previously applied wind direction normalization generates a map of Hg inventory and deposition on the landscape (Supplementary video). This novel application of sediment core data constructs a landscape model and allows for a visualization of contaminant deposition with respect to a point major source in both space and time. The propensity for Hg to undergo long-range, even global transport explains why Hg deposition within 50km of Flin Flon was ~11% of estimated releases. That is until smelter releases were reduced >10-fold (post-2000), after which observed deposition exceeded smelter releases, suggesting landscape re-emission/remobilization of legacy Hg is a major ongoing regional source of Hg.

Keywords: Flin Flon smelter; Heavy metals; Mercury flux; Mercury inventory; Multi-core paleolimnology.