Resource Destroying Maps

Phys Rev Lett. 2017 Feb 10;118(6):060502. doi: 10.1103/PhysRevLett.118.060502. Epub 2017 Feb 8.

Abstract

Resource theory is a widely applicable framework for analyzing the physical resources required for given tasks, such as computation, communication, and energy extraction. In this Letter, we propose a general scheme for analyzing resource theories based on resource destroying maps, which leave resource-free states unchanged but erase the resource stored in all other states. We introduce a group of general conditions that determine whether a quantum operation exhibits typical resource-free properties in relation to a given resource destroying map. Our theory reveals fundamental connections among basic elements of resource theories, in particular, free states, free operations, and resource measures. In particular, we define a class of simple resource measures that can be calculated without optimization, and that are monotone nonincreasing under operations that commute with the resource destroying map. We apply our theory to the resources of coherence and quantum correlations (e.g., discord), two prominent features of nonclassicality.