Spectroscopic Observation of a Hydrogenated CO Dimer Intermediate During CO Reduction on Cu(100) Electrodes

Angew Chem Int Ed Engl. 2017 Mar 20;56(13):3621-3624. doi: 10.1002/anie.201700580. Epub 2017 Feb 23.

Abstract

Carbon dioxide and carbon monoxide can be electrochemically reduced to useful products such as ethylene and ethanol on copper electrocatalysts. The process is yet to be optimized and the exact mechanism and the corresponding reaction intermediates are under debate or unknown. In particular, it has been hypothesized that the C-C bond formation proceeds via CO dimerization and further hydrogenation. Although computational support for this hypothesis exists, direct experimental evidence has been elusive. In this work, we detect a hydrogenated dimer intermediate (OCCOH) using Fourier transform infrared spectroscopy at low overpotentials in LiOH solutions. Density functional theory calculations support our assignment of the observed vibrational bands. The formation of this intermediate is structure sensitive, as it is observed only during CO reduction on Cu(100) and not on Cu(111), in agreement with previous experimental and computational observations.

Keywords: CO dimer; CO reduction; DFT calculations; IR spectroscopy; electrocatalysis.

Publication types

  • Research Support, Non-U.S. Gov't