Surface-Electronic-State-Modulated, Single-Crystalline (001) TiO2 Nanosheets for Sensitive Electrochemical Sensing of Heavy-Metal Ions

Anal Chem. 2017 Mar 21;89(6):3386-3394. doi: 10.1021/acs.analchem.6b04023. Epub 2017 Mar 2.

Abstract

Intrinsically low conductivity and poor reactivity restrict many semiconductors from electrochemical detection. Usually, metal- and carbon-based modifications of semiconductors are necessary, making them complex, expensive, and unstable. Here, for the first time, we present a surface-electronic-state-modulation-based concept applied to semiconductors. This concept enables pure semiconductors to be directly available for ultrasensitive electrochemical detection of heavy-metal ions without any modifications. As an example, a defective single-crystalline (001) TiO2 nanosheet exhibits high electrochemical performance toward Hg(II), including a sensitivity of 270.83 μA μM-1 cm-2 and a detection limit of 0.017 μM, which is lower than the safety standard (0.03 μM) of drinking water established by the World Health Organization (WHO). It has been confirmed that the surface oxygen vacancy adsorbs an O2 molecule while the Ti3+ donates an electron, forming the O2•- species that facilitate adsorption of Hg(II) and serve as active sites for electron transfer. These findings not only extend the electrochemical sensing applications of pure semiconductors but also stimulate new opportunities for investigating atom-level electrochemical behaviors of semiconductors by surface electronic-state modulation.

Publication types

  • Research Support, Non-U.S. Gov't