Health risk assessment of China's main air pollutants

BMC Public Health. 2017 Feb 20;17(1):212. doi: 10.1186/s12889-017-4130-1.

Abstract

Background: With the rapid development of China's economy, air pollution has attracted public concern because of its harmful effects on health.

Methods: The source apportioning of air pollution, the spatial distribution characteristics, and the relationship between atmospheric contamination, and the risk of exposure were explored. The in situ daily concentrations of the principal air pollutants (PM2.5, PM10, SO2, NO2, CO and O3) were obtained from 188 main cities with many continuous air-monitoring stations across China (2014 and 2015).

Results: The results indicate positive correlations between PM2.5 and SO2 (R 2 = 0.395/0.404, P < 0.0001), CO (R 2 = 0.187/0.365, P < 0.0001), and NO2 (R 2 = 0.447/0.533, P < 0.0001), but weak correlations with O3 (P > 0.05) for both 2014 and 2015. Additionally, a significant relationship between SO2, NO2, and CO was discovered using regression analysis (P < 0.0001), indicating that the origin of air pollutants is likely to be vehicle exhaust, coal consumption, and biomass open-burning. For the spatial pattern of air pollutants, we found that the highest concentration of SO2, NO2, and CO were mainly distributed in north China (Beijing-Tianjin-Hebei regions), Shandong, Shanxi and Henan provinces, part of Xinjiang and central Inner Mongolia (2014 and 2015).

Conclusions: The highest concentration and risk of PM2.5 was observed in the Beijing-Tianjin-Hebei economic belts, and Shandong, Henan, Shanxi, Hubei and Anhui provinces. Nevertheless, the highest concentration of O3 was irregularly distributed in most areas of China. A high-risk distribution of PM10, SO2 and NO2 was also observed in these regions, with the high risk of PM10 and NO2 observed in the Hebei and Shandong province, and high-risk of PM10 in Urumchi. The high-risk of NO2 distributed in Beijing-Yangtze River Delta region-Pearl River Delta region-central. Although atmospheric contamination slightly improved in 2015 compared to 2014, humanity faces the challenge of reducing the environmental and public health effects of air pollution by altering the present mode of growth to achieve sustainable social and economic development.

Keywords: Air pollutants; China; Haze; Health risk; Spatial patterns.

MeSH terms

  • Air Pollutants / analysis*
  • Air Pollution / analysis*
  • China
  • Cities
  • Environmental Monitoring / methods
  • Environmental Monitoring / statistics & numerical data*
  • Humans
  • Particulate Matter / analysis*
  • Public Health
  • Regression Analysis
  • Risk Assessment
  • Vehicle Emissions / analysis

Substances

  • Air Pollutants
  • Particulate Matter
  • Vehicle Emissions