Influence of Lactobacillus plantarum on yogurt fermentation properties and subsequent changes during postfermentation storage

J Dairy Sci. 2017 Apr;100(4):2512-2525. doi: 10.3168/jds.2016-11864. Epub 2017 Feb 16.

Abstract

This study aimed to evaluate the influence of 9 Lactobacillusplantarum with broad-spectrum antibacterial activity on fermented milk, including changes to the fermentation characteristics (pH, titration acidity, and viable counts), texture profile, relative content of volatile compounds, and sensory evaluation during 28-d storage at 4°C. First, L. plantarum IMAU80106, IMAU10216, and IMAU70095 were selected as candidates for further study because of their excellent coagulation and proteolytic activities. Subsequently, these L. plantarum strainswere supplemented to fermented milk produced by commercial yogurt starters (Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus) and a panel of parameters reflecting product quality was subsequently monitored during 28 d of postfermentation storage. The pH value and titration acidity of the fermented milk mildly fluctuated, whereas the L. plantarum viable counts remained stable along the storage period. Fourteen key volatile compounds were detected in the fermented milk by gas chromatography-mass spectrometry, and some flavor compounds were uniquely present in the L. plantarum-supplemented fermented milk (including 2,3-pentanedione, acetaldehyde, and acetate). No significant difference was shown in the sensory evaluation scores between samples with or without L. plantarum supplementation, but a gradual decrease was observed over storage in all samples. However, when L. plantarum was added, apparent shifts were observed in the overall quality of the fermented milk based on principal component analysis and multivariate ANOVA, particularly in the texture (adhesiveness) and volatile flavor compound profiles (acetaldehyde). Compared with L. plantarum IMAU80106 and IMAU10216, both the texture and volatile flavor profiles of IMAU70095 were closest to those of the control without adding the adjunct bacteria, suggesting that IMAU70095 might be the most suitable strain for further application in functional dairy product development. The current work has explored the potential of applying L. plantarum in fermented milk by performing thorough physical and chemical characterization. Our work is of intense interest to the dairy industry.

Keywords: Lactobacillus plantarum; adjunct culture; fermented milk; postfermentation storage.

MeSH terms

  • Animals
  • Fermentation
  • Lactobacillus
  • Lactobacillus delbrueckii
  • Lactobacillus plantarum*
  • Milk / chemistry
  • Streptococcus thermophilus
  • Yogurt*