AMBRA1, a Novel BH3-Like Protein: New Insights Into the AMBRA1-BCL2-Family Proteins Relationship

Int Rev Cell Mol Biol. 2017:330:85-113. doi: 10.1016/bs.ircmb.2016.09.002. Epub 2016 Nov 15.

Abstract

Cellular homeostasis swings like a pendulum backward and forward between life and death. Two of the main processes, which regulate this equilibrium, are autophagy and apoptosis. While autophagy is a highly conserved self-digestion mechanism that mediates degradation of damaged or surplus components, apoptosis is a programmed cell suicide in which typical death signals induce the elimination of undesired cells. Both these processes are highly regulated by complex molecular machineries, including some common proteins whose "dual role" favors one process or the other. Among these proteins, the well-known antiapoptotic factor BCL2 downregulates autophagy through interactions with the essential autophagic effectors, BECN1/BECLIN 1 and AMBRA1. Recently, we have demonstrated that the proautophagic protein AMBRA1 contains a BH3 domain necessary for AMBRA1 binding with the antiapoptotic factor BCL2. We found that the AMBRA1-BCL2 couple have a "dual role" in autophagy and apoptosis: the mitochondrial pool of BCL2 is able to inhibit AMBRA1-dependent autophagy, whereas in cell death conditions, the cleaved form of AMBRA1 (AMBRA1CT), resulting from CASP/CASPASES-cleavage, abrogates the prosurvival activity of BCL2 and promotes a proapoptotic amplification loop. The CASP-cleaved form of AMBRA1 bound other antiapoptotic members of the BCL2 family proteins such as MCL1 and BCL2L1/BCL-X; by contrast, no binding could be detected with the proapoptotic-BCL2 factors such as BAK1/BAK and BAX. These findings underline an intricate interplay between autophagy and cell death in which the proautophagic protein AMBRA1 and the antiapoptotic BCL2 family members are the major players. Here, we give an overview of the AMBRA1-BCL2 family proteins interactome and its involvement in controlling life and cell death. We discuss a putative therapeutic target which offers the novel BH3 motif identified in the C-terminal part of AMBRA1.

Keywords: AMBRA1; Apoptosis; Autophagy; BCL2 family proteins; BH3 motif.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptor Proteins, Signal Transducing / metabolism*
  • Animals
  • Apoptosis
  • Autophagy
  • Humans
  • Molecular Targeted Therapy
  • Oncogenes
  • Proto-Oncogene Proteins c-bcl-2 / metabolism*

Substances

  • Adaptor Proteins, Signal Transducing
  • Proto-Oncogene Proteins c-bcl-2