New insights and changing paradigms in the regulation of vitamin A metabolism in development

Wiley Interdiscip Rev Dev Biol. 2017 May;6(3):10.1002/wdev.264. doi: 10.1002/wdev.264. Epub 2017 Feb 16.

Abstract

Vitamin A and its active metabolite retinoic acid are essential for embryonic development and adult homeostasis. Surprisingly, excess or deficiency of vitamin A and retinoic acid can cause similar developmental defects. Therefore, strict feedback and other mechanisms exist to regulate the levels of retinoic acid within a narrow physiological range. The oxidation of vitamin A to retinal has recently been established as a critical nodal point in the synthesis of retinoic acid, and over the past decade, RDH10 and DHRS3 have emerged as the predominant enzymes that regulate this reversible reaction. Together they form a codependent complex that facilitates negative feedback maintenance of retinoic acid levels and thus guard against the effects of dysregulated vitamin A metabolism and retinoic acid synthesis. This review focuses on advances in our understanding of the roles of Rdh10 and Dhrs3 and their impact on development and disease. WIREs Dev Biol 2017, 6:e264. doi: 10.1002/wdev.264 For further resources related to this article, please visit the WIREs website.

Publication types

  • Review
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Embryonic Development / physiology*
  • Homeostasis / physiology*
  • Humans
  • Signal Transduction
  • Vitamin A / metabolism*

Substances

  • Vitamin A