Two Unprecedented POM-Based Inorganic-Organic Hybrids with Concomitant Heteropolytungstate and Molybdate

Inorg Chem. 2017 Mar 6;56(5):2481-2489. doi: 10.1021/acs.inorgchem.6b02601. Epub 2017 Feb 15.

Abstract

Two novel POM-based inorganic-organic hybrids, [Cu6II(2,2'-bipy)6(Mo6O22)(SiW12O40)]n (1), and {[Cu6II(ppz)6(H2O)5(MoO4)(SiW12O40)]·4H2O}n (2) (2,2'-bipy = 2,2'-bipyridine, Hppz = 3-(pyrid-2-yl)pyrazole), have been constructed from heteropolytungstates and molybdates. Two compounds have been identified by single crystal X-ray diffraction, elemental analysis, and FT-IR. Compound 1 shows a 1D (one-dimensional) chain structure constructed from classical Keggin heteropolytungstate [SiW12O40]4- clusters and [Cu6(2,2'-bipy)6] modified isopolymolybdates [Mo6O22]8-. Compound 2 also represents a 1D chain-like motif built from classical Keggin heteropolytungstate [SiW12O40]4- clusters and [Cu8(ppz)6(H2O)5] modified molybdates MoO42-. Compound 1 represents the first example of POM-based inorganic-organic hybrid with mixed heteropolytungstates and isopolymolybdates. ESI-MS (electrospray ionization mass spectrometry) technique was employed to reveal the species and their evolutions in the hydrothermal reaction, whereby trivacant [SiW9] building block gradually transforms to classical Keggin [SiW12] during assembly process. Furthermore, the electrocatalytic and magnetic properties were discussed in details.