Ca2+ Selective Host Rotaxane Is Highly Toxic Against Prostate Cancer Cells

ACS Med Chem Lett. 2017 Jan 4;8(2):163-167. doi: 10.1021/acsmedchemlett.6b00347. eCollection 2017 Feb 9.

Abstract

New therapies are needed to eradicate androgen resistant, prostate cancer. Prostate cancer usually metastasizes to bone where the concentration of calcium is high, making Ca2+ a promising toxin. Ionophores can deliver metal cations into cells, but are currently too toxic for human use. We synthesized a new rotaxane (CEHR2) that contains a benzyl 15-crown-5 ether as a blocking group to efficiently bind Ca2+. CEHR2 transfers Ca2+ from an aqueous solution into CHCl3 to greater extent than alkali metal cations and Mg2+. It also transfers Ca2+ to a greater extent than CEHR1, which is a rotaxane with an 18-crown-6 ether as a blocking group. CEHR2 was more toxic against the prostate cancer cell lines PC-3, 22Rv1, and C4-2 than CEHR1. This project demonstrates that crown ether rotaxanes can be designed to bind a targeted metal cation, and this selective cation association can result in enhanced toxicity.

Keywords: Prostate cancer; calcium; crown ethers; rotaxanes.