Collidoscope: An Improved Tool for Computing Collisional Cross-Sections with the Trajectory Method

J Am Soc Mass Spectrom. 2017 Apr;28(4):587-596. doi: 10.1007/s13361-017-1594-2. Epub 2017 Feb 13.

Abstract

Ion mobility-mass spectrometry (IM-MS) can be a powerful tool for determining structural information about ions in the gas phase, from small covalent analytes to large, native-like or denatured proteins and complexes. For large biomolecular ions, which may have a wide variety of possible gas-phase conformations and multiple charge sites, quantitative, physically explicit modeling of collisional cross sections (CCSs) for comparison to IMS data can be challenging and time-consuming. We present a "trajectory method" (TM) based CCS calculator, named "Collidoscope," which utilizes parallel processing and optimized trajectory sampling, and implements both He and N2 as collision gas options. Also included is a charge-placement algorithm for determining probable charge site configurations for protonated protein ions given an input geometry in pdb file format. Results from Collidoscope are compared with those from the current state-of-the-art CCS simulation suite, IMoS. Collidoscope CCSs are within 4% of IMoS values for ions with masses from ~18 Da to ~800 kDa. Collidoscope CCSs using X-ray crystal geometries are typically within a few percent of IM-MS experimental values for ions with mass up to ~3.5 kDa (melittin), and discrepancies for larger ions up to ~800 kDa (GroEL) are attributed in large part to changes in ion structure during and after the electrospray process. Due to its physically explicit modeling of scattering, computational efficiency, and accuracy, Collidoscope can be a valuable tool for IM-MS research, especially for large biomolecular ions. Graphical Abstract ᅟ.

Keywords: Collisional cross-section; Computational theory; Ion mobility; Native IM-MS; Native mass spectrometry; Noncovalent complexes; Trajectory method.

MeSH terms

  • Algorithms*
  • Gases / chemistry
  • Ion Mobility Spectrometry / methods*
  • Ions / chemistry
  • Mass Spectrometry / methods*
  • Models, Molecular
  • Proteins / chemistry*

Substances

  • Gases
  • Ions
  • Proteins