Thoracolumbar movement in sound horses trotting in straight lines in hand and on the lunge and the relationship with hind limb symmetry or asymmetry

Vet J. 2017 Feb:220:95-104. doi: 10.1016/j.tvjl.2017.01.003. Epub 2017 Jan 4.

Abstract

Equine movement symmetry is changed when turning, which may induce alterations in thoracolumbosacral kinematics; however, this has not previously been investigated. Our objectives were to document thoracolumbar movement in subjectively sound horses comparing straight lines with circles on both reins and to relate these observations to the objectively determined symmetry/asymmetry of hindlimb gait. Fourteen non-lame horses were assessed prospectively in a non-random, cross-sectional survey. The horses were trotted in straight lines and lunged on both reins and inertial sensor data collected at landmarks: withers, T13 and T18, L3, tubera sacrale, and left and right tubera coxae. Data were processed using published methods; angular motion range of motion (ROM; flexion-extension, axial rotation, lateral bending) and translational ROM (dorsoventral and lateral) and symmetry within each stride were assessed. The dorsoventral movement of the back exhibited a sinusoidal pattern with two oscillations per stride. Circles induced greater asymmetry in dorsoventral movement within each stride (mean ± standard deviation, up to 9 ± 6%) compared with straight lines (up to 6 ± 6%). The greatest amplitude of dorsoventral movement (119 ± 14 mm in straight lines vs. 126 ± 20 mm in circles) occurred at T13. Circles induced greater flexion-extension ROM (>1.3°; P = 0.002), lateral bending (>16°; P <0.001), and lateral motion (>16 mm; P = 0.002) compared with straight lines. Circles induced a movement pattern similar to an inside hindlimb lameness, which was significantly associated with the circle-induced greater asymmetry of dorsoventral movement of the thoracolumbar region (P = 0.03). Moving in a circle induces measurable changes in thoracolumbar movement compared with moving in straight lines, associated with alterations in the hindlimb gait.

Keywords: Back pain; Biomechanics; Equine; Inertial measurement units; Lameness.

MeSH terms

  • Animals
  • Biomechanical Phenomena
  • Cross-Sectional Studies
  • Gait*
  • Hindlimb / physiology*
  • Horses / physiology*
  • Range of Motion, Articular