Discrete signaling mechanisms of mTORC1 and mTORC2: Connected yet apart in cellular and molecular aspects

Adv Biol Regul. 2017 May:64:39-48. doi: 10.1016/j.jbior.2016.12.001. Epub 2017 Jan 4.

Abstract

Activation of PI3K/Akt/mTOR (mechanistic target of rapamycin) signaling cascade has been shown in tumorigenesis of numerous malignancies including glioblastoma (GB). This signaling cascade is frequently upregulated due to loss of the tumor suppressor PTEN, a phosphatase that functions antagonistically to PI3K. mTOR regulates cell growth, motility, and metabolism by forming two multiprotein complexes, mTORC1 and mTORC2, which are composed of special binding partners. These complexes are sensitive to distinct stimuli. mTORC1 is sensitive to nutrients and mTORC2 is regulated via PI3K and growth factor signaling. mTORC1 regulates protein synthesis and cell growth through downstream molecules: 4E-BP1 (also called EIF4E-BP1) and S6K. Also, mTORC2 is responsive to growth factor signaling by phosphorylating the C-terminal hydrophobic motif of some AGC kinases like Akt and SGK. mTORC2 plays a crucial role in maintenance of normal and cancer cells through its association with ribosomes, and is involved in cellular metabolic regulation. Both complexes control each other as Akt regulates PRAS40 phosphorylation, which disinhibits mTORC1 activity, while S6K regulates Sin1 to modulate mTORC2 activity. Another significant component of mTORC2 is Sin1, which is crucial for mTORC2 complex formation and function. Allosteric inhibitors of mTOR, rapamycin and rapalogs, have essentially been ineffective in clinical trials of patients with GB due to their incomplete inhibition of mTORC1 or unexpected activation of mTOR via the loss of negative feedback loops. Novel ATP binding inhibitors of mTORC1 and mTORC2 suppress mTORC1 activity completely by total dephosphorylation of its downstream substrate pS6KSer235/236, while effectively suppressing mTORC2 activity, as demonstrated by complete dephosphorylation of pAKTSer473. Furthermore, proliferation and self-renewal of GB cancer stem cells are effectively targetable by these novel mTORC1 and mTORC2 inhibitors. Therefore, the effectiveness of inhibitors of mTOR complexes can be estimated by their ability to suppress both mTORC1 and 2 and their ability to impede both cell proliferation and migration.

Keywords: Akt; Stem cell; mTOR; mTORC1; mTORC2.

Publication types

  • Review

MeSH terms

  • Antineoplastic Agents / therapeutic use*
  • Brain Neoplasms / drug therapy*
  • Brain Neoplasms / genetics
  • Brain Neoplasms / metabolism
  • Brain Neoplasms / pathology
  • Cell Movement / drug effects
  • Cell Proliferation / drug effects
  • Clinical Trials as Topic
  • Gene Expression Regulation, Neoplastic*
  • Glioblastoma / drug therapy*
  • Glioblastoma / genetics
  • Glioblastoma / metabolism
  • Glioblastoma / pathology
  • Humans
  • Indoles / therapeutic use
  • Mechanistic Target of Rapamycin Complex 1 / antagonists & inhibitors*
  • Mechanistic Target of Rapamycin Complex 1 / genetics
  • Mechanistic Target of Rapamycin Complex 1 / metabolism
  • Mechanistic Target of Rapamycin Complex 2 / antagonists & inhibitors*
  • Mechanistic Target of Rapamycin Complex 2 / genetics
  • Mechanistic Target of Rapamycin Complex 2 / metabolism
  • Neoplastic Stem Cells / metabolism
  • Neoplastic Stem Cells / pathology
  • PTEN Phosphohydrolase / deficiency
  • PTEN Phosphohydrolase / genetics
  • Phosphatidylinositol 3-Kinases / genetics
  • Phosphatidylinositol 3-Kinases / metabolism
  • Phosphoinositide-3 Kinase Inhibitors
  • Proto-Oncogene Proteins c-akt / antagonists & inhibitors
  • Proto-Oncogene Proteins c-akt / genetics
  • Proto-Oncogene Proteins c-akt / metabolism
  • Purines / therapeutic use
  • Signal Transduction
  • Sirolimus / analogs & derivatives
  • Sirolimus / therapeutic use

Substances

  • Antineoplastic Agents
  • Indoles
  • Phosphoinositide-3 Kinase Inhibitors
  • Purines
  • ridaforolimus
  • temsirolimus
  • Mechanistic Target of Rapamycin Complex 1
  • Mechanistic Target of Rapamycin Complex 2
  • Proto-Oncogene Proteins c-akt
  • PTEN Phosphohydrolase
  • PTEN protein, human
  • PP242
  • Sirolimus