Morphology Evolution and Degradation of CsPbBr3 Nanocrystals under Blue Light-Emitting Diode Illumination

ACS Appl Mater Interfaces. 2017 Mar 1;9(8):7249-7258. doi: 10.1021/acsami.6b14423. Epub 2017 Feb 17.

Abstract

Under illumination of light-emitting diode (LED) or sunlight, the green color of all-inorganic CsPbBr3 perovskite nanocrystals (CPB-NCs) often quickly changes to yellow, followed by large photoluminescence (PL) loss. To figure out what is happening on CPB-NCs during the color change process, the morphology, structure, and PL evolutions are systematically investigated by varying the influence factors of illumination, moisture, oxygen, and temperature. We find that the yellow color is mainly originated from the large CPB crystals formed in the illumination process. With maximized isolation of oxygen for the sandwiched film or the uncovered film stored in nitrogen, the color change can be dramatically slowed down whether there is water vapor or not. Under dark condition, the PL emissions are not significantly influenced by the varied relative humidity (RH) levels and temperatures up to 60 °C. Under the precondition of oxygen or air, color change and PL loss become more obvious when increasing the illumination power or RH level, and the large-sized cubic CPB crystals are further evolved into the oval-shaped crystals. We confirm that oxygen is the crucial factor to drive the color change, which has the strong synergistic effect with the illumination and moisture for the degradation of the CPB film. Meanwhile, the surface decomposition and the increased charge trap states occurred in the formed large CPB crystals play important roles for the PL loss.

Keywords: CsPbBr3 nanocrystals; color change; illumination; morphology; photoluminescence.