Water-Gated n-Type Organic Field-Effect Transistors for Complementary Integrated Circuits Operating in an Aqueous Environment

ACS Omega. 2017 Jan 31;2(1):1-10. doi: 10.1021/acsomega.6b00256. Epub 2017 Jan 3.

Abstract

The first demonstration of an n-type water-gated organic field-effect transistor (WGOFET) is here reported, along with simple water-gated complementary integrated circuits, in the form of inverting logic gates. For the n-type WGOFET active layer, high-electron-affinity organic semiconductors, including naphthalene diimide co-polymers and a soluble fullerene derivative, have been compared, with the latter enabling a high electric double layer capacitance in the range of 1 μF cm-2 in full accumulation and a mobility-capacitance product of 7 × 10-3 μF/V s. Short-term stability measurements indicate promising cycling robustness, despite operating the device in an environment typically considered harsh, especially for electron-transporting organic molecules. This work paves the way toward advanced circuitry design for signal conditioning and actuation in an aqueous environment and opens new perspectives in the implementation of active bio-organic interfaces for biosensing and neuromodulation.