A Robust Metal-Organic Framework Combining Open Metal Sites and Polar Groups for Methane Purification and CO2 /Fluorocarbon Capture

Chemistry. 2017 Mar 23;23(17):4060-4064. doi: 10.1002/chem.201606038. Epub 2017 Mar 6.

Abstract

A 3D porous perchlorinated metal-organic framework (MOF), LIFM-26, featuring dual functionality, that is, functional polar groups and open metal sites, has been synthesized using perchlorinated linear dicarboxylate to link trigonal prismatic Fe33 -O) units. LIFM-26 exhibits good thermal and chemical stability, and possesses high porosity with a BET surface area of 1513 m2 g-1 , compared with isoreticular MOF-235 and Fe3 O(F4 BDC)3 (H2 O)3 (F4 BDC=2,3,5,6-tetrafluorobenzene-1,4-dicarboxylate). Most strikingly, LIFM-26 features good gas sorption/separation performance at 298 K and 1 atm with IAST selectivity values reaching up to 36, 93, 23, 11, 46, and 202 for CO2 /CH4 , CO2 /N2 , C2 H4 /CH4 , C2 H6 /CH4 , C3 H8 /CH4 , and R22/N2 (R22=CHClF2 ), respectively, showing potential for use in biogas/natural gas purification and CO2 /R22 capture.

Keywords: carbon dioxide adsorption; chemical stability; light hydrocarbons; metal-organic frameworks; open metal sites; polar functional groups.