Self-Consistent Charge Density Functional Tight-Binding Study of Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) Ammonia Gas Sensor

Nanoscale Res Lett. 2017 Dec;12(1):90. doi: 10.1186/s11671-017-1878-2. Epub 2017 Feb 6.

Abstract

Geometric and electronic properties of 3,4-ethylenedioxythiophene (EDOT), styrene sulfonate (SS), and EDOT: SS oligomers up to 10 repeating units were studied by the self-consistent charge density functional tight-binding (SCC-DFTB) method. An application of PEDOT:PSS for ammonia (NH3) detection was highlighted and investigated both experimentally and theoretically. The results showed an important role of H-bonds in EDOT:SS oligomers complex conformation. Electrical conductivity of EDOT increased with increasing oligomers and doping SS due to enhancement of π conjugation. Printed PEDOT:PSS gas sensor exhibited relatively high response and selectivity to NH3. The SCC-DFTB calculation suggested domination of direct charge transfer process in changing of PEDOT:PSS conductivity upon NH3 exposure at room temperature. The NH3 molecules preferred to bind with PEDOT:PSS via physisorption. The most favorable adsorption site for PEDOT:PSS-NH3 interaction was found to be at the nitrogen atom of NH3 and hydrogen atoms of SS with an average optimal binding distance of 2.00 Å.

Keywords: Ammonia gas sensor; Conducting polymers; PEDOT:PSS; QM/MD simulation; SCC-DFTB.