No inbreeding depression in laboratory-reared individuals of the parasitoid wasp Allotropa burrelli

Ecol Evol. 2017 Jan 15;7(3):964-973. doi: 10.1002/ece3.2643. eCollection 2017 Feb.

Abstract

Inbreeding depression is a major concern in almost all human activities relating to plant and animal breeding. The biological control of pests with natural enemies is no exception, because populations of biocontrol agents experience a series of bottlenecks during importation, rearing, and introduction. A classical biological control program for the Comstock mealybug Pseudococcus comstocki (Hemiptera: Pseudococcidae) was initiated in France in 2008, based on the introduction of an exotic parasitoid, Allotropa burrelli Mues. (Hymenoptera: Platygastridae), a haplodiploid parasitoid imported from Japan. We evaluated the sensitivity of A. burrelli to inbreeding, to optimize rearing and release strategies. We compared several morphological and life-history traits between the offspring of siblings and the offspring of unrelated parents. We took into account the low level of genetic variability due to the relatively small size of laboratory-reared populations by contrasting two types of pedigree: one for individuals from a strain founded from a single field population, and the other generated by hybridizing individuals from two strains founded from two highly differentiated populations. Despite this careful design, we obtained no evidence for a negative impact of inbreeding on laboratory-reared A. burrelli. We discussed the results in light of haplodiploid sex determination and parasitoid mating systems, and classical biological control practices.

Keywords: Allotropa burrelli; biological control; captive populations; genetic load; haplodiploidy; inbreeding depression.