Stabilization Of Apoptotic Cells: Generation Of Zombie Cells

Redox Biol. 2015 Aug:5:416. doi: 10.1016/j.redox.2015.09.020. Epub 2015 Dec 30.

Abstract

Apoptosis is characterized by degradation of cell components but plasma membrane remains intact. Apoptotic microtubule network (AMN) is organized during apoptosis forming a cortical structure beneath plasma membrane that maintains plasma membrane integrity. Apoptotic cells are also characterized by high reactive oxygen species (ROS) production that can be potentially harmful for the cell. The aim of this study was to develop a method that allows stabilizing apoptotic cells for diagnostic and therapeutic applications. We were able by using a cocktail composed of taxol (a microtubule stabilizer), Zn2+ (a caspase inhibitor) and coenzyme Q10 (a lipid antioxidant) to stabilize H460 apoptotic cells in cell cultures for at least 72hours preventing secondary necrosis. Stabilized apoptotic cells maintain many apoptotic cells characteristics such as the presence of apoptotic microtubules, plasma membrane integrity, low intracellular calcium levels, plasma membrane potential, PS externalization and ability of being phagocytosed. Stabilized apoptotic cells can be considered as dying cells in which the cellular cortex and plasma membrane are maintained intact or alive. In a metaphorical sense, we can consider them as "living dead" or "zombie cells". Stabilization of apoptotic cells can be used for reliable detection and quantification of apoptosis in cultured cells and may allow a safer administration of apoptotic cells in clinical applications. Furthermore, it opens new avenues in the functional reconstruction of apoptotic cells for longer preservation.

MeSH terms

  • Animals
  • Apoptosis*
  • Cell Line
  • Cell Membrane / genetics
  • Cell Membrane / metabolism*
  • Humans
  • Membrane Potentials*
  • Microtubules / genetics
  • Microtubules / metabolism*