Somatic clonal evolution: A selection-centric perspective

Biochim Biophys Acta Rev Cancer. 2017 Apr;1867(2):139-150. doi: 10.1016/j.bbcan.2017.01.006. Epub 2017 Feb 2.

Abstract

It is generally accepted that the initiation and progression of cancers is the result of somatic clonal evolution. Despite many peculiarities, evolution within populations of somatic cells should obey the same Darwinian principles as evolution within natural populations, i.e. variability of heritable phenotypes provides the substrate for context-specific selection forces leading to increased population frequencies of phenotypes, which are better adapted to their environment. Yet, within cancer biology, the more prevalent way to view evolution is as being entirely driven by the accumulation of "driver" mutations. Context-specific selection forces are either ignored, or viewed as constraints from which tumor cells liberate themselves during the course of malignant progression. In this review, we will argue that explicitly focusing on selection forces acting on the populations of neoplastic cells as the driving force of somatic clonal evolution might provide for a more accurate conceptual framework compared to the mutation-centric driver gene paradigm. Whereas little can be done to counteract the "bad luck" of stochastic occurrences of cancer-related mutations, changes in selective pressures and the phenotypic adaptations they induce can, in principle, be exploited to limit the incidence of cancers and to increase the efficiency of existing and future therapies. This article is part of a Special Issue entitled: Evolutionary principles - heterogeneity in cancer?, edited by Dr. Robert A. Gatenby.

Keywords: Cancer; Driver; Initiation; Natural selection; Progression; Selective pressures.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Adaptation, Physiological
  • Animals
  • Biomarkers, Tumor / genetics*
  • Biomarkers, Tumor / metabolism
  • Cell Transformation, Neoplastic / genetics*
  • Cell Transformation, Neoplastic / metabolism
  • Cell Transformation, Neoplastic / pathology
  • Clonal Evolution*
  • Evolution, Molecular*
  • Gene Expression Regulation, Neoplastic
  • Genetic Fitness*
  • Genetic Predisposition to Disease
  • Heredity
  • Humans
  • Models, Genetic
  • Mutation
  • Neoplasms / drug therapy
  • Neoplasms / genetics*
  • Neoplasms / metabolism
  • Neoplasms / pathology
  • Pedigree
  • Phenotype
  • Signal Transduction / genetics
  • Time Factors

Substances

  • Biomarkers, Tumor