Two-Dimensional Au-Nanoprism/Reduced Graphene Oxide/Pt-Nanoframe as Plasmonic Photocatalysts with Multiplasmon Modes Boosting Hot Electron Transfer for Hydrogen Generation

J Phys Chem Lett. 2017 Feb 16;8(4):844-849. doi: 10.1021/acs.jpclett.6b03045. Epub 2017 Feb 6.

Abstract

Two-dimensional Au-nanoprism/reduced graphene oxide (rGO)/Pt-nanoframe was synthesized as plasmonic photocatalyt, exhibiting activity of photocatalytic hydrogen generation greater than those of Au-nanorod/rGO/Pt-nanoframe and metallic plasmonic photocatalyst Pt-Au. The single-particle plasmonic photoluminescence study demonstrated that Au-nanorod has only a longitudinal plasmon resonance mode for hot electron transfer to rGO, while Au-nanoprism has in-plane dipole and multipole surface plasmon resonance modes for hot electron transfer, leading to highly efficient charge separation for hydrogen generation.